Terahertz Optoelectronics of Quantum Rings and Nanohelices
نویسندگان
چکیده
منابع مشابه
Terahertz Optoelectronics with Surface Plasmon Polariton Diode
The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonst...
متن کاملOptimal control of quantum rings by terahertz laser pulses.
Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conve...
متن کاملHybrid Metal-Graphene Plasmons for Tunable Terahertz Optoelectronics
Mohammad M. Jadidi, a Andrei B. Sushkov, Rachael L. Myers-Ward, Anthony K. Boyd, Kevin M. Daniels, D. Kurt Gaskill, b Michael S. Fuhrer, 4, c H. Dennis Drew, d and Thomas E. Murphy e Institute for Research in Electronics & Applied Physics, University of Maryland, College Park, MD 20742, USA Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA ...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Semiconductors
سال: 2018
ISSN: 1063-7826,1090-6479
DOI: 10.1134/s1063782618140075